Role of skeletal muscle in plasma ion and acid-base regulation after NaHCO3 and KHCO3 loading in humans.
نویسندگان
چکیده
This paper examines the time course of changes in plasma electrolyte and acid-base composition in response to NaHCO3 and KHCO3 ingestion. It was hypothesized that skeletal muscle is involved in the correction of the ensuing plasma disturbance by exchanging ions, gasses, and fluids between cells and extracellular fluids. Five male subjects, with catheters in a brachial artery and antecubital vein, ingested 3.57 mmol/kg body mass NaHCO3 or KHCO3. While seated, blood samples were taken 30 min before ingestion of the solution, at 10-min intervals during the 60-min ingestion period, and periodically for 210 min after ingestion was complete. Blood was analyzed for gases, hematocrit, plasma ions, and total protein. With NaHCO3, arterial plasma Na+ concentration ([Na+]) increased from 143 ± 1 to 147 ± 1 (SE) meq/l, H+ concentration ([H+]) decreased by 6 ± 1 neq/l, and [Formula: see text] increased by 5 ± 1 mmHg. There was no detectable net Na+ uptake by tissues. An increased plasma strong ion difference ([SID]) accounted fully for the decrease in plasma [H+]. With KHCO3, K+ concentration increased from 4.25 ± 0.10 to 7.17 ± 0.13 meq/l, plasma volume decreased by 15.5 ± 2.3%, [H+] decreased by 4 ± 1 neq/l, and there was no change in[Formula: see text]. The decrease in [H+] in the KHCO3 trial primarily arose in response to the increased [SID]. Net K+ uptake by tissues accounted for 37 ± 5% of the ingested K+. In conclusion, ingestion of NaHCO3and KHCO3 produced markedly different fluid and ionic disturbances and associated regulatory responses by skeletal muscle. Accordingly, the physicochemical origins of the acid-base disturbances also differed between treatments. The tissues did not play a role in regulating plasma [Na+] after ingestion of NaHCO3. In contrast, the net influx of K+ to tissues played an important role in removing K+ from the extracellular compartment after ingestion of KHCO3.
منابع مشابه
Ursolic acid induces myoglobin expression and skeletal muscle remodeling in mice
Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...
متن کاملEffects of NaHCO3 loading on acid-base balance, lactate concentration, and performance in racing greyhounds.
This investigation examined the effects of NaHCO3 loading on lactate concentration ([La]), acid-base balance, and performance for a 603. 5-m sprint task. Ten greyhounds completed a NaHCO3 (300 mg/kg body weight) and control trial in a crossover design. Results are expressed as means +/- SE. Presprint differences (P < 0.05) were found for NaHCO3 vs. control, respectively, for blood pH (7.47 +/- ...
متن کاملThe Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men
High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...
متن کاملEFFECT OF AEROBIC TRAINING AND ETHANOL CONSUMPTION ON LIPID PROFILE AND GENE EXPRESSION OF SOME GASTROCNEMIUS MUSCLE MYOKINES IN MALE RATS
Background: Skeletal muscle as an endocrine tissue is involved in the regulation of metabolic activity, production and secretion of hormones including myokines. The aim of the present study was to investigate the effect of eight weeks of aerobic training combined with ethanol consumption on plasma lipid profile and glucose levels, triglyceride content and mayonectin, irisin and leptin gene expr...
متن کاملTHE EFFECTS OF INTERVAL TRAINING INTENSITY ON SKELETAL MUSCLE PGC-1Α IN TYPE2 DIABETIC MALE RATS
Background: The purpose of this study was to compare the effects of a 12 weeks interval training with high and moderate intensity on PGC-1α of skeletal muscle in type 2 diabetic male rats. Methods: 40 male rats were divided into two groups: High fat diet (HFD) (n=32) and standard diet (C) (n=8) for 10 weeks. After inducing type2 diabetes via STZ, 8 diabetic rats (D) and 8 rats in group C rats ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 1999